МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ШКОЛА № 20» ГОРОДА НОРИЛЬСКА

РАССМОТРЕНО на заседании НМС протокол № 1 от « 30» августа 2024г.

СОГЛАСОВАНО: Зам. Директора по ВР ________Т.П.Хвостова « 30 /» 08 2024г. УТВЕРЖДАЮ: Директор МБОУ «СШ № 20» Е.В.Руденко «30 » 08 2024г.

РАБОЧАЯ ПРОГРАММА

по внеурочной деятельности

«Молекулярная генетика и генная инженерия»

(Направление: общеинтеллектуальное,

вид деятельности – познавательная)

на 2024-2025 учебный год

Программа составлена: учителем биологии высшей квалификационной категории ______ К.М. Овчаренко

Общая характеристика элективного курса

Рабочая программа внеурочной деятельности «Молекулярная генетика и генная инженерия» имеет интеллектуальную направленность разработана в соответствии с требованиями федерального компонента государственного образовательного стандарта среднего общего образования (биология), на основе авторской программы В.В. Велькова. (Программа элективных курсов. Биология. 10-11 классы. Профильное обучение /авт. —сост. В.И. Сивоглазов, В.В. Пасечник. — 2-е изд., стереотип. — М.: Дрофа, 2006)

Актуальность курса определяется тем, что величайшие достижения биологии еще не стали известны широким массам, а школьные программы просто не успевают за развитием науки. Речь идет о направленном изменении наследственности - генной инженерии. Для развития мотивации к изучению курса в содержании делается акцент на значимость данной науки для человека, его здоровья.

Предлагаемая программа охватывает основные разделы молекулярной генетики прокариот и эукариот, которые знакомят учащихся с современными представлениями об основных генетических и биохимических процессах, протекающих в клетках, с главными механизмами функционирования генов у микроорганизмов, растений и животных, с принципами организации их генов и геномов.

Особое внимание уделено развитию у учащихся понимания того, каким образом функционируют белки и гены; как различные генетические и метаболические процессы взаимосвязаны друг с другом и как они координировано регулируются факторами окружающей среды каким образом знания молекулярно-генетических процессов применяются в генной инженерии для конструирования трансгенных организмов. Полученные знания могут стать основой, на которой в дальнейшем должно формироваться освоение основных биологических дисциплин, понимание механизмов эволюции и принципов, на которых основывается современная трансгенная биотехнология.

Цель курса:

Формирование знания основных молекулярно-гене**тических** процессов и представлений, как на их основе проводитсягенно-инженерное конструирование трансгенных организмов с заданными свойствами.

Задачи курса:

Расширить и углубить знания учащихся о строении функционировании генов прокариот и эукариот.

Дать представление о современном понимании молекулярных механизмов эволюции. Обосновать основные принципы и методы генной инженерии как необходимое условие применения на практикезнаний молекулярно-генетических процессов и принципов строения различных генов.

Расширить знания о молекулярных механизмах регуляции генов и о генноинженерных методах, **направлен**ных на создание трансгенных организмов с заданными полезными свойствами.

Познакомить учащихся с основными принципами современной трансгенной биотехнологии основанной на применении организмов, полученных с помощью генной инженерии.

Данная программа рассчитана для категории учащихся 16-17 лет, которым интересна генетика.

Курс внеурочной деятельности предназначен для учащихся 10 класса и рассчитан на 34 часа учебных занятий (1 час в неделю по 40 минут.).

Содержание

Общее количество часов —34

Введение (4 ч)

Молекулярная генетика как наука. Связь молекулярной генетики с биохимией нуклеиновых кислот ибиохимией белков, с генетикой микроорганизмов, молекулярной биологиейи биоинформатикой. Генная инженерия как технология конструированиятрансгенных организмов. Значение молекулярной генетики для развития генной инженерии. Рольгенной инженерии в биотехнологии, сельском хозяйстве, пищевой промышленности, медицине, охране окружающейсреды.

Объекты и методы молекулярной генетики и генной инженерии. История молекулярной генетикии генной инженерии. Демонстрациясхемы, иллюстрирующей взаимосвязь молекулярной генетики и генной инженерии между собой и с другими науками. Прокариотные и эукариотные организмы. Клетки микроорганизмов, клетки животных, клетки растений: разница и сходство. Нуклеоид микроорганизмов и ядро эукариотных клеток. Строение бактериальной и эукариотной хромосомы. Уровни организации эукариотной хромосомы. Эухроматин гетерохроматин — активные и инертные области эукариотной хромосомы.

Демонстрация схем:

- основные открытия в области молекулярной генетики;
- этапы развития генной инженерии;
- строение прокариотной и эукариотной клеток;

Раздел 1. Строение структурных генов (4ч.)

Что такое ген: от морфологического признака к молекулярному механизму его формирования. Строение ДНК, РНК и белков. Центральный постулат молекулярной биологии: ДНК — РНК — белок и его развитие. «Простое» строение генов прокариот и сложное «мозаичное» строение генов эукариот. Экзоны и интроны. Сплайсинг. Альтернативный сплайсинг — механизм, с помощью которого один эукариотный ген может кодировать множество разных белков. Расположение генов в прокариотной хромосоме — опероны. Расположение генов в эукариотной хромосоме — мультигенные семейства. Повторяющиеся последовательности (сателлитная ДНК), их роль в организации хроматина. Пути генно-инженерного преодоления несовместимости механизмов экспрессии генов у прокариот и эукариот. Методы разрезания ДНК — эндонуклеазы рестрикции. Методы выделения генов: химический синтез, комплементация, обратная транскрипция, полимеразная цепная реакция и др.

Демонстрациясхем:

- строение типичного прокариотного гена;
- строение типичного эукариотного гена (экзоны и интроны);
- конститутивный и альтернативный сплайсинг;
- строение оперона;
- строение мультигенного семейства;
- механизм действия эндонуклеаз рестрикции;
- методы выделения генов.

Раздел 2. Механизмы экспрессии генов (7 ч.)

Молекулярные механизмы транскрипции. ДНК-зависимые РНК-полимеразы эукариот, ИХ функции. Активация генов инициация транскрипцииДНК.Гены,регулирующие инициацию транскрипции:промотор, энхансер, сайленсер, инсулятори другие. Белки регуляторы транскрипции: репрессоры и активаторы. Модификация нуклеосом как фактор регуляции транскрипции генов узукариот. Элонгация и терминация транскрипции терминаторы. Типичные механизмы регуляции транскрипции у прокариот: лактозный оперон. Типичные механизмы регуляции инициации транскрипции узукариот — ДНКзависимой РНК-полимеразы активности транскриптосомы. Генно-инженерные методы обеспечения экспрессии чужеродных генов, векторы для экспрессии.

Демонстрация схем:

- ДНК-зависимые РНК-полимеразы прокариот и эукариот, их функции;
- строение регуляторных областей транскрипции у прокариот и эукариот;
- основные типы белков, регуляторов транскрипции у прокариот и эукариот;
- механизм регуляции транскрипции эукариотных генов за счет ковалентной модификации нуклеосом;
 - строение и функционирование лактозного оперона;
 - сборкатранскриптосомы и активация ДНК-зависимойРНК-полимеразы II;
 - векторы для экспрессии клонированных генов

Раздел 3. Механизмы репликации, репарации и рекомбинации ДНК (8 ч.)

репликации Полуконсервативныймеханизм ДНК. ДНК-зависимыеДНКполимеразы прокариот и эукариот, их функции, механизм их действия. Белки и ферменты репликации: ДНК-лигаза, топоизомераза, ДНК-гиразаидр. Суперспирализация ДНК. Участок инициации репликации хромосомы origin.Применение ферментов(репликации в генной инженерии. Векторы автономной репликации чужеродной ДНК.

Обеспечение точности репликации ДНКи спонтанный мутагенез. Механизмы репарации неправильно спаренных оснований и их роль в эволюции. Эксцизионнаяреспирация ДНК. Индуцируемая репарация, SOS-ответ, индуцируемые стрессами мутагенные ДНК-зависимые

ДНК-полимеразы, их роль в адаптивном мутагенезе эволюции. Применение ферментов репарации в ген и инженерии. Направленная модификация генов — сайт направленный мутагенез. Основные принципы белковой инженерии.

Механизмы рекомбинации. Законная (гомологическая) рекомбинация и сайтспецифическая рекомбинация. Рекомбинационная репарация. Их генетическая роль. Эволюционная роль рекомбинации. Применение гомологической и сайтспецифической рекомбинации в генной инженерии для интеграции чужеродных генов в хромосому реципиентного организма и для инактивации хромосомных генов. Векторы для адресованной интеграции чужеродной ДНК в хромосому. Получение новых высокоактивных генов путем рекомбинационной «перетасовки» экзонов.

Незаконная рекомбинация и мобильные генетические элементы прокариот и эукариот. Механизм перемещения бактериальных мобильных генетических элементов. Роль транспозонов в эволюции микроорганизмов, в распространении лекарственной устойчивости среди микроорганизмов. Применение транспозонов в

генной инженерии для конструирования векторных молекул и для проведения перестроек в геноме.

Мобильные генетические элементы эукариот. Транспозиция за счет обратной транскрипции — ретротранспозоны. Связь между ретротранспозонами и ретровирусами. Роль мобильных генетических элементов в эволюции эукариот. Применение обратной транскрипции в генной инженерии. Мобильные генетические элементы как векторы для эукариот. Плазмиды, бактериофаги и вирусы эукариот. Принципы их строения и методы их применения в генной инженерии в качестве векторов. Трансмис-сибельные и конъюгативныеплазмиды, их роль в эволюции микроорганизмов и в генной инженерии. Умеренные бактериофаги как векторы. Эукариотные вирусы в генной инженерии эукариот. Проблемы структурной и репликатив- ной стабильности рекомбинантных ДНК.

Раздел 4. Механизмы трансляции (4 ч.)

Основные свойства генетического кода: вырожденность (избыточность), систематичность, помехоустойчивость. Разные эффективности декодирования различных синонимичных кодонов при кодировании различных типов генов. Аппарат трансляции у прокариот и эукариот. Строение рибосомы, белковые факторы между транскрипцией и трансляцией у прокариот. Механизм трансляции. Связь аминокислот биосинтеза регуляции экспрессии оперонов транскрипции за счет трансляции лидерного пептида — триптофановый оперон. Происходит ли трансляция в ядрах эукариот? Строение зон у матричных РНК прокариот и эукариот, инженерии, обеспечивающие высокоэффективную трансляцию мРНК.Векторы чужеродных ДЛЯ суперпродукции белков клониронанных генов. Проблемы инженерии генной штаммом суперпродуцентовнизкомолекулярных (аминокислот) соединений принципы метаболической инженерии.

Демонстрация схем:

- строение рибосом прокариот и эукариот, рРНК, рибосомальных белков;
- стадии трансляции у прокариот и эукариот;
- механизм регуляции транскрипции триптофановогооперона;
- векторы для суперпродукции.

Практическое занятие

Разработка и защита проектов конструирования рекомбинантных ДНК, предназначенных для решения различных научных и практических задач.

Раздел 5. Методы получения трансгенных микроорганизмов, растений и животных (4 ч.)

Методы введения рекомбинантных ДНК В реципиентные организмы. Трансформация микроорганизмов и методы селекции трансформантов. Векторы для селекции рекомбинантных ДНК. Основные классы трансгенных микроорганизмов: суперпродуценты полезных соединений, штаммы биодеструкторы для очистки окружающей загрязнителей, (биоремедиации) среды трансгенные ОТ микроорганизмы, повышающие эффективность сельского хозяйства. Культуры клеток растений.

Трансформация клеток растений, методы селекции трансформантов и регенерации из них трансгенных растений. Векторы для растений. Основные классы трансгенных растений: инсектицидные, устойчивые к гербицидам, устойчивые к

стрессам, ирующие ценные соединения.

Культуры клеток животных. Трансформация клеток животных и методы селекции трансформантов. Получение трансгенных животных. Микроинъекция рекомбинантных ДНК в ядра яйцеклеток. Основные типы трансгенных животных: с повышенной продукцией биомассы, трансгенные как биореакторы для получения ценных белков.

Принципы и проблемы репродуктивного клонирования животных. Эпигенетические эффекты и жизнеспособность клонов.

Демонстрация схем:

- методы трансформации микроорганизмов, клеток растений и клеток животных;
- методы селекции трансформантов; к получение трансгенных растений и животных:
 - репродуктивное клонирование
 - строение лидерных зонпрокариотных и эукариотных мРНК;

Раздел 6. Трансгенные организмы и проблемы обеспечения биобезопасности (2 ч.)

Потенциальные опасности, связанные с применением трансгенных организмов. Токсикологический риск при применении трансгенных организмов для производства пищи и кормов. Типы экологических рисков при интродукции трансгенныхорганизмов (в особенности, трансгенныхрастений) в окружающую среду и принципы их оценки. Государственное регулирование промышленного применения трансгенныхорганизмов. Отношение общества к трансгенной биотехнологии. Принципы биоэтики при генной терапии.

Демонстрация схем:

- основные типы рисков, связанных с применением трансгенных организмов;
- принципы оценки рисков, связанные с интродукцией трансгенных организмов в окружающую среду.

Заключение (1 ч.)

Итоговая конференция«Молекулярная генетика и генная инженерия в XXI веке».

Результаты освоения элективного курса

Личностные:

- ответственное отношение к учению;
- готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- начальные навыки адаптации в динамично изменяющемся мире;
- экологическая культура: ценностное отношение к природному миру, готовность следовать нормам природоохранного, здоровьесберегающего поведения;
- формирование способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
- умение контролировать процесс и результат учебной математической деятельности;

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД).

1. Регулятивные универсальные учебные действия

Выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- сопоставлять полученный результат деятельности с поставленной заранее целью.

2. Познавательные универсальные учебные действия

Выпускник научится:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
 - менять и удерживать разные позиции в познавательной деятельности.

3. Коммуникативные универсальные учебные действия

Выпускник научится:

— осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;

- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

Предметные результаты

- строение различных классов генов прокариот и эукариот;
- основные молекулярные механизмы репликации, рекомбинации и репарации генов;
 - основные механизмы регуляции транскрипции генов и процессинга (сплайсинга) информационных РНК;
 - основные механизмы, обеспечивающие биосинтез белков (трансляцию);
- важнейшие методы генной инженерии (выделение генов, модификацию генов, сшивание генов, внесение чужеродных генов в реципиентные организмы);
 - принципы техники безопасности работ с трансгенными организмами;
- принципы оценки токсикологического и экологического риска при интродукции трансгенных организмов в окружающую среду (в особенности принципы оценки экологического риска трансгенных растений);
- важнейшие принципы биоэтики, связанные с генной терапией, с клонированием эмбриональных стволовых клеток человека, с репродуктивным клонированием человека.

Выпускник на базовом уровне научится:

- характеризовать основные принципы строения структурных и регуляторных генов и регуляторных белков прокариот и эукариот;
- объяснить молекулярные механизмы репликации, репарации и рекомбинации генов и принципы применения этих механизмов в генной инженерии;
- охарактеризовать основные механизмы экспрессии генов и применение этих механизмов в генно-инженерном конструировании составлять принципиальные схемы конструирования рекомбинантных ДНК, экспрессирующих чужеродные гены и обосновать принципы такого конструирования;
- характеризовать основные области практического применения трансгенных организмов.

Тематическое планирование 10 «А» класса

№	Тема	Кол-	Теория	Практика	Формы
п/п		В0			проведения
		часов			занятий
1	Введение	4	4	0	Лекция
2	Строение структурных генов	4	2	2	Лекция
					Практикум
3	Механизмы экспрессии генов	7	4	3	Лекция

					Практикум
4	Механизмы репликации,	8	4	4	Лекция
	репарации и рекомбинации				Практикум
	днк				
5	Механизмы трансляции	4	2	2	Лекция
	_				Практикум
6	Методы получения	4	2	2	Лекция
	трансгенных микроорганизмов,				Практикум
	растений и животных				
7	Трансгенные организмы и	2	1	1	Лекция
	проблемы обеспечения				Практикум
	биобезопасности				
8	Заключение	1		1	
		34	19	15	

Учебно-методическое и информационно-техническое обеспечение

Кабинет биологии оснащен всеми необходимыми материалами для проведения лабораторных, практических работ и демонстраций. Также в кабинете имеются: ноутбук, выход в сеть Интернет.

- 1. Альбертс Б. и др. Молекулярная биология клетки. М.: Мир, 1994.
- 2. Введение в молекулярную биологию. М.: Мир, 1988г.
- 3. Ченцов Ю.С. Общая цитология. М.: Изд-во Моск. Ун-та, 1998.

Интернет – сайты.

- 1. http://cellbioutmb.edu сайт университета Юта (США) по клеточной биологии, гистологии, анатомии и физиологии.
- 2. http://www.nature.ru сайт МГУ (Россия) по всем разделам биологии, медицины и другим наукам (статьи, рефераты, обзоры)
- 3. http://www.issep.rssi.ru сайт Соросовского образовательного журнала (все статьи в свободном доступе)
- 4. http://biouroki.ru/test/
- 5. http://test.biologii.net

No	Тема	Кол-во	Дата	Дата
п/п		часов	план	факт
	Введение 4 ч.			
1/1	Молекулярная генетика как наука. Связь	1		
	молекулярной генетики сдругими науками.			
2/2	Генная инженерия как технология	1		
	конструирования трансгенных организмов.			
	Значение молекулярной генетики для			
	развития генной инженерии.			
3/3	Роль генной инженерии в биотехнологии,	1		
	сельском хозяйстве, медицине, охране			
	окружающей среды.			
4/4	Объекты и методы молекулярной генетики	1		
	и генной инженерии. История развития			
	молекулярной генетики и генной			

	инженерии.	
	Строение структурных і	генов 4 ч.
5/1	Ген. Строение ДНК, РНК и белков.	1
6/2	Экзоны и интроны. Сплайсинг.	1
7/3	Расположение генов в эукариотической	1
	хромосоме. Расположение генов в	
	прокариотной хромосоме.	
8/4	Методы выделения генов.	1
0, 1	Механизмы экспрессии	renor 7 y
9/1	Молекулярные механизмы транскрипции.	1
10/2	ДНК – зависимые РНК – полимеразы	1
10/2	прокариот и эукариот, их функции.	
11/3	Гены, регулирующие инициацию	1
11/3	транскрипции.	
12/4	Белки – регуляторы транскрипции:	1
12/7	репрессоры и активаторы.	1
13/5	Типичные механизмы регуляции	1
13/3	транскрипции у прокариот: лактозный	
	оперон.	
14/6	Типичные механизмы регуляции	1
14/0		
	инициации транскрипции уэукариот — регуляция активности ДНК- зависимой	
	РНК-полимеразы II — сборка	
	транскриптосомы.	
15/7	Генно-инженерные методы обеспечения	1
13/7	экспрессии чужеродных генов, векторы для	
	экспрессии чужеродных тенов, векторы для экспрессии.	
	Механизмы репликации, репарации и	рекомбинации ЛНК 8 и
16/1	Полуконсервативный механизм	1 1
10/1	репликации ДНК.	1
17/2	Белки и ферменты репликации: ДНК-	1
17/2	лигаза, топоизомераза, ДНК-гираза.	
18/3	Суперспирализация ДНК.	1
10/3	Суперепирализации дине.	
19/4	Применение ферментов репликации в	1
17/7	генной инженерии.	1
20/5	Векторы для автономной репликации	1
20/3	чужеродный ДНК.	
21/6	Обеспечение точности репликации ДНК и	1
21/0	спонтанный мутагенез.	
22/7	Эволюционная репарация ДНК. Основные	1
	принципы белковой инженерии.	
23/8	Незаконная рекомбинация и мобильные	1
25/0	генетическиеэлементы прокариот и	
	эукариот.	
	Механизмы трансляц	тии 4 ч.
24/1	Основные свойства генетического кода:	1
∠ - T / 1	сеповные свонетва тепетического кода.	1

	вырожденность, систематичность,					
	помехоустоичивость. Аппарат трансляции					
	упрокариот и эукариот.					
25/2	Связь трансляции и транскрипции у	1				
	прокариот.					
26/3	Методы генной инженерии,	1				
	обеспечивающие высокоэффективную					
	трансляцию чужеродных мРНК.					
27/4	Проблемы генной инженерии штаммов	1				
	суперпродуцентов низкомолекулярных					
	соединений (аминокислот)- принципы					
	метаболической инженерии.					
	Методы получения трансгенных микроорганизмов,					
	растений и животны	х 4 ч.				
28/1	Методы введения рекомбинантных ДНК в	1				
	реципиентные организмы. Основные					
	классы трансгенных организмов.					
29/2	Культуры клеток растений. Трансформация	1				
	и векторы для растений. Основные классы					
20.12	трансгенных растений.	4				
30/3	Культуры клеток животных.	1				
	Трансформация клеток животных и методы					
21/4	селекции трансформантов.	1				
31/4	Принципы и проблемы репродуктивного	1				
	клонирования животных. Эпигенетические					
	эффекты и жизнеспособность клонов.					
	Трансгенные организмы и проблемы обесп	ечения ои	юбезопасности 2 ч.			
32/1	Потенциальные опасности, связанные с	1				
22/2	применением трансгенных организмов.	1				
33/2	· · · · · · · · · · · · · · · · · · ·	1				
	биотехнологии. Принципы биоэтики при генной терапии. <i>Промежуточная</i>					
	• • • • • • • • • • • • • • • • • • • •					
	аттестация. Заключение 1 ч	<u> </u>				
34/3	Молекулярная генетика и генная	1				
J -1 /J	инженерия в XXI веке.	1				
	minericpin b mi boke.					